Amino-Terminal Polymorphisms of the Human β_2 -Adrenergic Receptor Impart Distinct Agonist-Promoted Regulatory Properties, by Stuart A. Green, Jamal Turki, Michael Innis, and Stephen B. Liggett*, Volume 33, Number 32, August 16, 1994, pages 9414–9419.

Page 9418. Due to a printing error, the data in Figure 5 did not reproduce well. The figure should appear as follows:

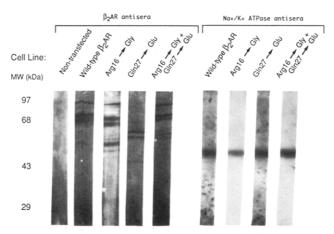


FIGURE 5: Western blots of wild-type and mutated β_2AR expressed in CHW cells. An antibody against the β_2AR indicates an altered mobility of the Gln27—Glu and Arg16—Gly + Gln27—Glu mutation compared to wild-type β_2AR . In contrast, the Na⁺/K⁺ ATPase (probed as a control) migrated at identical molecular masses for all four cell lines. Shown are data from a single experiment representative of four such studies performed.

Spectroscopic and Thermodynamic Characterization of the Interaction of N⁷-Guanyl Thioether Derivatives of d(TGCTG*CAAG) with Potential Complements, by Magnus Persmark and F. Peter Guengerich, Volume 33, Number 29, July 26, 1994, pages 8662–8672.

Page 8669. The legend to Figure 7 should read as follows: FIGURE 7: Plot of A_{267} versus pH for d(TGCTGCAAG) (\square) and $d(TGCTG^{Cys}CAAG)/d(TGCTGCAAG^{Cys})$ (\blacksquare). Symbols refer to A_{267} values normalized to absorbances at the isosbestic points for each set of spectra (Figure 6): 245.5, 256.0, and 280.5 nm for d(TGCTGCAAG) and 245.5 and 280.5 nm for $d(TGCTG^{Cys}CAAG)/d(TGCTGCAAG^{Cys})$, respectively. In the latter case, data from two independent measurements are shown. For clarity in comparing the spectral titration curves of the unmodified with the alkylated species, all data points within a set were divided by the lowest datum in that set.